Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e10935, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571788

RESUMEN

Scavenging mammals and vultures can exploit and deplete carcasses much faster than other birds and invertebrates. Vultures are strongly influenced by habitat type, e.g. tree cover, since they rely on their eyesight to detect carcasses. It remains unclear whether and how facultative scavengers - both other birds and mammals - are influenced by tree cover and how that affect carcass decomposition time, which in turn affects biodiversity and ecological processes, including the cycle of energy and nutrients. We studied whether the carcass detection and consumption, hence carcass decomposition speed, by facultative avian and mammalian scavengers varies with tree cover in areas without vultures. Fresh mammal carcasses were placed in different landscapes across the Netherlands at locations that widely varied in tree cover. Camera traps were used to record carcass exploitation by facultative avian and mammalian scavengers and to estimate carcass decomposition time. We found that carcass detection and consumption by birds, wild boar, and other mammals varied between locations. Carcass decomposition speed indeed increased with carcass detection and exploitation by mammals, especially by wild boar. However, this variation was not related to tree cover. We conclude that tree cover is not a major determinant of carcass exploitation by facultative scavengers in areas without obligate scavengers and large carnivores.

2.
Proc Biol Sci ; 291(2014): 20232460, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196354

RESUMEN

Stressors may lead to a shift in the timing of life-history events of species, causing a mismatch with optimal environmental conditions, potentially reducing fitness. In honeybees, the timing of brood rearing and nest emergence in late winter/early spring is critical as colonies need to grow fast after winter to prepare for reproduction. However, the effects of stress on these life-history events in late winter/early spring and the possible consequences are not well understood. Therefore, we tested whether (i) honeybee colonies shift timing of brood rearing and nest emergence as response to stressors, and (ii) if there is a consequent loss of social resilience, reflected in colony fitness (survival, growth and reproduction). We monitored stressed (high load of the parasitic mite Varroa destructor or nutrition restricted) colonies and presumably non-stressed colonies from the beginning of 2020 till spring of 2021. We found that honeybee colonies do not shift the timing of brood rearing and nest emergence in spring as a coping mechanism to stressors. However, we show that there is loss of social resilience in stressed colonies, leading to reduced growth and reproduction. Our study contributes to better understanding the effects of stressors on social resilience in eusocial organisms.


Asunto(s)
Resiliencia Psicológica , Abejas , Animales , Habilidades de Afrontamiento , Estado Nutricional , Reproducción , Estaciones del Año
3.
Pest Manag Sci ; 79(7): 2311-2324, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36792531

RESUMEN

BACKGROUND: Understanding where species occur using species distribution models has become fundamental to ecology. Although much attention has been paid to invasive species, questions about climate change related range shifts of widespread insect pests remain unanswered. Here, we incorporated bioclimatic factors and host plant availability into CLIMEX models to predict distributions under future climate scenarios of major cereal pests of the Sitobion grain aphid complex (Sitobion avenae, S. miscanthi, and S. akebiae). Additionally, we incorporated the application of irrigation in our models to explore the relevance of a frequently used management practice that may interact with effects of climate change of the pest distributions. RESULTS: Our models predicted that the area potentially at high risk of outbreaks of the Sitobion grain aphid complex would increase from 41.3% to 53.3% of the global land mass. This expansion was underlined by regional shifts in both directions: expansion of risk areas in North America, Europe, most of Asia, and Oceania, and contraction of risk areas in South America, Africa, and Australia. In addition, we found that host plant availability limited the potential distribution of pests, while the application of irrigation expanded it. CONCLUSION: Our study provides insights into potential risk areas of insect pests and how climate, host plant availability, and irrigation affect the occurrence of the Sitobion grain aphid complex. Our results thereby support agricultural policy makers, farmers, and other stakeholders in their development and application of management practices aimed at maximizing crop yields and minimizing economic losses. © 2023 Society of Chemical Industry.


Asunto(s)
Áfidos , Animales , Cambio Climático , Ecología , África , Asia
4.
Ecol Evol ; 12(10): e9365, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36225822

RESUMEN

Scavenging is widespread in the carnivore guild and can greatly impact food web structures and population dynamics by either facilitation or suppression of sympatric carnivores. Due to habitat loss and fragmentation, carnivores are increasingly forced into close sympatry, possibly resulting in more interactions such as kleptoparasitism and competition. In this paper, we investigate the potential for these interactions when carnivore densities are high. A camera trap survey was conducted in central Tuli, Botswana, to examine leopard Panthera pardus densities and spatiotemporal activity patterns of leopard and its most important competitors' brown hyena Parahyaena brunnea and spotted hyena Crocuta crocuta. Spatial capture-recapture models estimated leopard population density to be 12.7 ± 3.2 leopard/100 km2, which is one of the highest leopard densities in Africa. Time-to-event analyses showed both brown hyena and spotted hyena were observed more frequently before and after a leopard observation than expected by chance. The high spatiotemporal overlap of both hyena species with leopard is possibly explained by leopard providing scavenging opportunities for brown hyena and spotted hyena. Our results suggest that central Tuli is a high-density leopard area, despite possible intense kleptoparasitism and competition.

5.
Ecol Evol ; 12(9): e9293, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177109

RESUMEN

In Europe, 50%-70% of former natural grassland area has been destroyed during the past 30 years due to land use changes, losses are expected to increase in the future. Restoration is thought to reverse this situation by creating suitable abiotic conditions. In this paper, we investigate the effects of sod translocation with specific vegetation to facilitate the restoration of a former intensive agricultural field into a wet meadow. First, starting conditions were optimized including modification of the local hydrology, removal of the fertilized topsoil, application of liming, and translocation of fresh clippings as a seed source. The second part aimed at restoring the habitat for the butterfly species Phengaris (Maculinea) teleius, one of the species that was especially affected by the loss of wet meadows. This species engages in a complex myrmecophilous relationship with one host plant, Sanguisorba officinalis, and one obligate host ant, Myrmica scabrinodis. We used sod translocation to create islands of habitat to promote host plant and host ant colonization. After 4 years following the restoration, we observed that plants spread from the transplanted sods to the surroundings. The vegetation composition and structure of the transplanted sods attracted colonization of Myrmica ants into the restored areas. Following the increase in vegetation cover and height, Myrmica ant colonies further spread into the restored areas. Therefore, sod translocations can be considered an effective restoration method following topsoil removal in the process of restoring wet meadows to provide a starting point for ant colonization and plant dispersion. With these findings, this paper contributes to the evidence-based restoration of wet meadows on former agricultural fields, including complex interactions between invertebrates and their required ecological relationships.

6.
Science ; 376(6593): 653-656, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511966

RESUMEN

Anthropogenically elevated CO2 (eCO2) concentrations have been suggested to increase woody cover within tropical ecosystems through fertilization. The effect of eCO2 is built into Earth system models, although testing the relationship over long periods remains challenging. Here, we explore the relative importance of six drivers of vegetation change in western Africa over the past ~500,000 years (moisture availability, fire activity, mammalian herbivore density, temperature, temperature seasonality, CO2) by coupling past environmental change data from Lake Bosumtwi (Ghana) with global data. We found that moisture availability and fire activity were the most important factors in determining woody cover, whereas the effect of CO2 was small. Our findings suggest that the role of eCO2 effects on tropical vegetation in predictive models must be reconsidered.


Asunto(s)
Ecosistema , Incendios , Dióxido de Carbono , Ghana , Madera
7.
Ecol Evol ; 12(2): e8576, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35228859

RESUMEN

Carcass decomposition largely depends on vertebrate scavengers. However, how behavioral differences between vertebrate scavenger species, the dominance of certain species, and the diversity of the vertebrate scavenger community affect the speed of carcass decomposition is poorly understood. As scavenging is an overlooked trophic interaction, studying the different functional roles of vertebrate species in the scavenging process increases our understanding about the effect of the vertebrate scavenger community on carcass decomposition. We used motion-triggered infrared camera trap footages to profile the behavior and activity of vertebrate scavengers visiting carcasses in Dutch nature areas. We grouped vertebrate scavengers with similar functional roles. We found a clear distinction between occasional scavengers and more specialized scavengers, and we found wild boar (Sus scrofa) to be the dominant scavenger species in our study system. We showed that these groups are functionally different within the scavenger community. We found that overall vertebrate scavenger diversity was positively correlated with carcass decomposition speed. With these findings, our study contributes to the understanding about the different functional roles scavengers can have in ecological communities.

8.
Nat Commun ; 13(1): 792, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140206

RESUMEN

Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , Ecología , Aprendizaje Automático , Animales , Automatización , Ecosistema , Conocimiento , Modelos Teóricos
9.
Ecol Evol ; 12(1): e8442, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35136544

RESUMEN

We assessed the hypothesized negative correlation between the influence of multiple predators and body condition and fecundity of the European hare, from 13 areas in the Netherlands.Year-round abundance of predators was estimated by hunters. We quantified predator influence as the sum of their field metabolic rates, as this sum reflects the daily food requirements of multiple individuals. We determined the ratio between body mass and hindfoot length of hares as an index of body condition and the weight of their adrenal gland as a measure of chronic exposure to stress, and we counted the number of placental scars to estimate fecundity of hares.As hypothesized, we found that the sum of field metabolic rate of predators was negatively correlated with body condition and the number of placental scars, whereas it was positively related to the weight of the adrenal glands. In contrast to the sum of the field metabolic rate, the total number of predators did not or weakly affect the investigated risk responses.The sum of the field metabolic rate can be a useful proxy for the influence of multiple predators and takes into account predator abundance, type, body weight, and food requirements of multiple predators.With our findings, our paper contributes to a better understanding of the risk effects of multiple predators on prey fitness. Additionally, we identify a potential contributor to the decline of European hare populations.

10.
PLoS One ; 16(11): e0259748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780516

RESUMEN

Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residues in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy.


Asunto(s)
Plaguicidas , Animales , Argentina , Productos Agrícolas/metabolismo , Ecosistema , Europa (Continente) , Humanos
12.
Parasit Vectors ; 14(1): 188, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823921

RESUMEN

BACKGROUND: Tick-borne diseases (TBDs) are a serious threat to humans, wildlife and livestock, and cause severe economic losses in many tropical drylands. The effective control of TBDs has been constrained by limited understanding of what determines tick loads in animals. We tested interactive effects of several biological factors (sex, age and body condition), one environmental factor (rainfall) and one human factor (management type) on tick loads in animals. METHODS: We collected ticks on animals at four sampling sites in the semi-arid savanna area of Laikipia County, Kenya, of which two are commercial ranches and the other two are open pastoral grazing areas. From 2017 to 2019, we collected a total of 2038 ticks from 619 domestic animals from various cattle and camel herds and from 79 tranquilised wild animals. RESULTS: Generally, wild herbivores (zebras, rhinos and elephants) had higher tick loads than domestic animals. As 83% of the tick samples were taken from Boran cattle, we analysed tick load in these cattle in more detail. Boran cattle had high tick loads in the wet season, especially those animals in poor condition. No differences were found between female and male cattle, regardless of season. The calves had high tick loads during both the wet and dry seasons, whereas the sub-adult and adult cattle had less ticks during the dry season. Cattle on the intensively managed ranches had lower tick load than those in the transhumant management system. CONCLUSION: These findings highlight the importance of establishing effective control of ticks on domestic animals in transhumant management systems as tick loads were high on these animals in both the wet and dry season.


Asunto(s)
Ambiente , Infestaciones por Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/veterinaria , Garrapatas/fisiología , Clima Tropical , Factores de Edad , Animales , Animales Domésticos/parasitología , Animales Salvajes/parasitología , Camelus/parasitología , Bovinos , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/transmisión , Manejo de la Enfermedad , Femenino , Humanos , Kenia/epidemiología , Ganado/parasitología , Masculino , Lluvia , Estaciones del Año , Factores Sexuales , Infestaciones por Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/transmisión , Garrapatas/parasitología
14.
Sci Rep ; 11(1): 4596, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633133

RESUMEN

Wildlife crime is one of the most profitable illegal industries worldwide. Current actions to reduce it are far from effective and fail to prevent population declines of many endangered species, pressing the need for innovative anti-poaching solutions. Here, we propose and test a poacher early warning system that is based on the movement responses of non-targeted sentinel animals, which naturally respond to threats by fleeing and changing herd topology. We analyzed human-evasive movement patterns of 135 mammalian savanna herbivores of four different species, using an internet-of-things architecture with wearable sensors, wireless data transmission and machine learning algorithms. We show that the presence of human intruders can be accurately detected (86.1% accuracy) and localized (less than 500 m error in 54.2% of the experimentally staged intrusions) by algorithmically identifying characteristic changes in sentinel movement. These behavioral signatures include, among others, an increase in movement speed, energy expenditure, body acceleration, directional persistence and herd coherence, and a decrease in suitability of selected habitat. The key to successful identification of these signatures lies in identifying systematic deviations from normal behavior under similar conditions, such as season, time of day and habitat. We also show that the indirect costs of predation are not limited to vigilance, but also include (1) long, high-speed flights; (2) energetically costly flight paths; and (3) suboptimal habitat selection during flights. The combination of wireless biologging, predictive analytics and sentinel animal behavior can benefit wildlife conservation via early poacher detection, but also solve challenges related to surveillance, safety and health.


Asunto(s)
Migración Animal , Crimen , Algoritmos , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Humanos
15.
Curr Res Insect Sci ; 1: 100021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36003609

RESUMEN

Honeybee colonies experience high losses, induced by several stressors that can result in the collapse of colonies. Experiments show what effects stressors, such as parasites, pathogens and pesticides, can have on individual honeybees as well as colonies. Although individuals may die, colonies do not always collapse from such disturbances. As a superorganism, the colony can maintain or return back to homeostasis through colony mechanisms. This capacity is defined as social resilience. When the colony faces a high stress load, this may lead to breakdown in mechanisms, loss in resilience and eventually colony collapse. Before social resilience can be measured in honeybees, we need to examine the mechanisms in colonies that allow recovery and maintenance after stressor exposure. Here, we discuss some of these mechanisms and how they affect the social resilience of honeybee colonies. Understanding social resilience in honeybees is essential to managing colony health and loss prevention.

16.
R Soc Open Sci ; 7(9): 201222, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33047066

RESUMEN

The parasitic mite Varroa destructor is an important contributor to the high losses of western honeybees. Forager bees from Varroa-infested colonies show reduced homing and flight capacity; it is not known whether flight manoeuvrability and related learning capability are also affected. Here, we test how honeybees from Varroa-infested and control colonies fly in an environment that is unfamiliar at the beginning of each experimental day. Using stereoscopic high-speed videography, we analysed 555 landing manoeuvres recorded during 12 days of approximately 5 h in length. From this, we quantified landing success as percentage of successful landings, and assessed how this changed over time. We found that the forager workforce of Varroa-infested colonies did not improve their landing success over time, while for control bees landing success improved with approximately 10% each hour. Analysis of the landing trajectories showed that control bees improved landing success by increasing the ratio between in-flight aerodynamic braking and braking at impact on the landing platform; bees from Varroa-infested colonies did not increase this ratio over time. The Varroa-induced detriment to this landing skill-learning capability might limit forager bees from Varroa-infested colonies to adapt to new or challenging conditions; this might consequently contribute to Varroa-induced mortality of honeybee colonies.

17.
Parasitology ; 147(14): 1743-1751, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32907657

RESUMEN

Weather conditions can impact infectious disease transmission, causing mortalities in humans, wild and domestic animals. Although rainfall in dry tropical regions is highly variable over the year, rainfall is thought to play an important role in the transmission of tick-borne diseases. Whether variation in rainfall affects disease-induced mortalities, is, however, poorly understood. Here, we use long-term data on monthly rainfall and Boran cattle mortality (1998-2017) to investigate associations between within-year variation in rainfall and cattle mortalities due to East Coast fever (ECF), anaplasmosis and babesiosis in Laikipia, Kenya, using ARIMAX modelling. Results show a negative correlation between monthly rainfall and cattle mortality for ECF and anaplasmosis, with a lag effect of 2 and 6 months, respectively. There was no association between babesiosis-induced mortalities and monthly rainfall. The results of this study suggest that control of the tick-borne diseases ECF and anaplasmosis to reduce mortalities should be intensified during rainy periods after the respective estimated time lags following dry periods.


Asunto(s)
Anaplasmosis/mortalidad , Babesiosis/mortalidad , Enfermedades de los Bovinos/mortalidad , Theileriosis/mortalidad , Anaplasmosis/microbiología , Animales , Babesiosis/parasitología , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/parasitología , Kenia/epidemiología , Lluvia , Estaciones del Año , Theileriosis/parasitología
18.
Glob Ecol Conserv ; 23: e01145, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32835033

RESUMEN

Wild vertebrate populations all over the globe are in decline, with poaching being the second-most-important cause. The high poaching rate of rhinoceros may drive these species into extinction within the coming decades. Some stakeholders argue to lift the ban on international rhino horn trade to potentially benefit rhino conservation, as current interventions appear to be insufficient. We reviewed scientific and grey literature to scrutinize the validity of reasoning behind the potential benefit of legal horn trade for wild rhino populations. We identified four mechanisms through which legal trade would impact wild rhino populations, of which only the increased revenue for rhino farmers could potentially benefit rhino conservation. Conversely, the global demand for rhino horn is likely to increase to a level that cannot be met solely by legal supply. Moreover, corruption is omnipresent in countries along the trade routes, which has the potential to negatively affect rhino conservation. Finally, programmes aimed at reducing rhino horn demand will be counteracted through trade legalization by removing the stigma on consuming rhino horn. Combining these insights and comparing them with criteria for sustainable wildlife farming, we conclude that legalizing rhino horn trade will likely negatively impact the remaining wild rhino populations. To preserve rhino species, we suggest to prioritize reducing corruption within rhino horn trade, increasing the rhino population within well-protected 'safe havens' and implementing educational programmes and law enforcement targeted at rhino horn consumers.

19.
Biol Open ; 9(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32376606

RESUMEN

Red-blue emitting LEDs have recently been introduced in greenhouses to optimise plant growth. However, this spectrum may negatively affect the performance of bumblebees used for pollination, because the visual system of bumblebees is more sensitive to green light than to red-blue light. We used high-speed stereoscopic videography to three-dimensionally track and compare landing manoeuvres of Bombus terrestris bumblebees in red-blue light and in regular, broad-spectrum white light. In both conditions, the landing approaches were interspersed by one or several hover phases, followed by leg extension and touchdown. The time between leg extension and touchdown was 25% (0.05 s) longer in red-blue light than in white light, caused by a more tortuous flight path in red-blue light. However, the total landing duration, specified as the time between the first hover phase and touchdown, did not differ between the light conditions. This suggests that the negative effects of red-blue light on the landing manoeuvre are confined to the final phase of the landing.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Abejas , Efecto Invernadero , Luz , Animales , Ambiente , Desarrollo de la Planta , Polinización
20.
Ecol Appl ; 30(1): e02019, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31600842

RESUMEN

Theory on the density-body-mass (DBM) relationship predicts that the density of animal species decreases by the power of -0.75 per unit increase in their body mass, or by the power of -1 when taxa across trophic levels are studied. This relationship is, however, largely debated, as the slope often deviates from the theoretical predictions. Here, we tested the ability of the DBM relationship to reflect changes in the structure of communities subjected to an anthropogenic disturbance. The slope would become less steep if smaller animals were more impacted by the disturbance than the larger ones, whereas the slope would become steeper if larger animals were more affected than the smaller ones. We tested the changes in the DBM relationship by sampling soil fauna, i.e., nematodes, Collembola, and larger arthropods, from a semiarid grassland before and after spraying diesel fuel as disturbance. We applied three different treatments: a control, a light disturbance, and an intense disturbance. We found that the slopes of the DBM relationships before the disturbance were around -1 as predicted by theory. The slope became more positive (i.e., less steep) just after the disturbance, especially after the intense disturbance as smaller fauna suffered the most and early colonizers had larger body mass. Interestingly, we observed that the slopes converged back to -1 by 2 months post-disturbance. Our findings show that the response of soil fauna communities to anthropogenic disturbances could explain the large variation in observed slopes of the DBM relationships. We experimentally demonstrate that an animal community, when disturbed, shows a temporal pattern of DBM relationships ranging from deviations from the predicted slope to convergence to the predicted slope with time. We recommend that deviations in the DBM relationships after disturbances can provide insights in the trajectory of community recovery, and hence could be used for biomonitoring.


Asunto(s)
Artrópodos , Suelo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...